Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Eur J Clin Nutr ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609641

RESUMO

BACKGROUND: Despite the abundance of research examining the effects of coffee, tea, and alcohol on inflammatory diseases, there is a notable absence of conclusive evidence regarding their direct causal influence on circulating inflammatory cytokines. Previous studies have primarily concentrated on established cytokines, neglecting the potential impact of beverage consumption on lesser-studied but equally important cytokines. METHODS: Information regarding the consumption of coffee, tea, and alcohol was collected from the UK Biobank, with sample sizes of 428,860, 447,485, and 462,346 individuals, respectively. Data on 41 inflammatory cytokines were obtained from summary statistics of 8293 healthy participants from Finnish cohorts. RESULTS: The consumption of coffee was found to be potentially associated with decreased levels of Macrophage colony-stimulating factor (ß = -0.57, 95% CI -1.06 ~ -0.08; p = 0.022) and Stem cell growth factor beta (ß = -0.64, 95% CI -1.16 ~ -0.12; p = 0.016), as well as an increase in TNF-related apoptosis-inducing ligand (ß = 0.43, 95% CI 0.06 ~ 0.8; p = 0.023) levels. Conversely, tea intake was potentially correlated with a reduction in Interleukin-8 (ß = -0.45, 95% CI -0.9 ~ 0; p = 0.045) levels. Moreover, our results indicated an association between alcohol consumption and decreased levels of Regulated on Activation, Normal T Cell Expressed and Secreted (ß = -0.24, 95% CI -0.48 ~ 0; p = 0.047), as well as an increase in Stem cell factor (ß = 0.17, 95% CI 0.02 ~ 0.31; p = 0.023) and Stromal cell-derived factor-1 alpha (ß = 0.20, 95% CI 0.04 ~ 0.36; p = 0.013). CONCLUSION: Revealing the interactions between beverage consumption and various inflammatory cytokines may lead to the discovery of novel therapeutic targets, thereby facilitating dietary interventions to complement clinical disease treatments.

2.
J Proteome Res ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634357

RESUMO

Gut microbiota-derived microbial compounds may link to the pathogenesis of colorectal cancer (CRC). However, the role of the host-microbiome in the incidence and progression of CRC remains elusive. We performed 16S rRNA sequencing, metabolomics, and proteomic studies on samples from 85 CRC patients who underwent colonoscopy examination and found two distinct changed patterns of microbiome in CRC patients. The relative abundances of Catabacter and Mogibacterium continuously increased from intramucosal carcinoma to advanced stages, whereas Clostridium, Anaerostipes, Vibrio, Flavonifractor, Holdemanella, and Hungatella were significantly altered only in intermediate lesions. Fecal metabolomics analysis exhibited consistent increases in bile acids, indoles, and urobilin as well as a decrease in heme. Serum metabolomics uncovered the highest levels of bilin, glycerides, and nucleosides together with the lowest levels of bile acids and amino acids in the stage of intermediate lesions. Three fecal and one serum dipeptides were elevated in the intermediate lesions. Proteomics analysis of colorectal tissues showed that oxidation and autophagy through the PI3K/Akt-mTOR signaling pathway contribute to the development of CRC. Diagnostic analysis showed multiomics features have good predictive capability, with AUC greater than 0.85. Our overall findings revealed new candidate biomarkers for CRC, with potentially significant diagnostic and prognostic capabilities.

3.
Compr Rev Food Sci Food Saf ; 23(3): e13332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578167

RESUMO

Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.


Assuntos
Antioxidantes , Euphausiacea , Animais , Estado Nutricional , Valor Nutritivo , Lipídeos
4.
Food Chem ; 446: 138852, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428078

RESUMO

Foodomics has become a popular methodology in food science studies. Mass spectrometry (MS) based metabolomics and proteomics analysis played indispensable roles in foodomics research. So far, several methodologies have been developed to detect the metabolites and proteins in diets and consumers, including sample preparation, MS data acquisition, annotation and interpretation. Moreover, multiomics analysis integrated metabolomics and proteomics have received considerable attentions in the field of food safety and nutrition, because of more comprehensive and deeply. In this context, we intended to review the emerging strategies and their applications in MS-based foodomics, as well as future challenges and trends. The principle and application of multiomics were also discussed, such as the optimization of data acquisition, development of analysis algorithm and exploration of systems biology.


Assuntos
Metabolômica , Proteômica , Proteômica/métodos , Metabolômica/métodos , Tecnologia de Alimentos , Espectrometria de Massas/métodos , Estado Nutricional
5.
J Agric Food Chem ; 72(12): 6118-6132, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477232

RESUMO

Cardiovascular diseases are caused by hypercholesterolemia. Astaxanthin (AST) has been reported to exhibit antioxidant and anti-inflammatory properties. However, its bioavailability is poor because of low solubility and instability. In order to improve the bioavailability of AST, we developed an intestinal-responsive composite carrier termed as "liposomes in micropheres" incorporating N-succinyl-chitosan (NSC)-poly(ethylene glycol) (PEG) liposomes that functionalized by neonatal Fc receptors (FcRn) into hydrogels of sodium alginate (SA) and carboxymethyl chitosan (CMCS). In the AST NSC/HSA-PEG liposomes@SA/CMCS microspheres, the AST's encapsulation efficiency (EE) was 96.26% (w/w) and its loading capacity (LC) was 6.47% (w/w). AST NSC/HSA-PEG liposomes had stability in the gastric conditions and achieved long-term release of AST in intestinal conditions. Then, AST NSC/HSA-PEG liposomes@SA/CMCS bind to intestinal epithelial cell targets by the neonatal Fc receptor. In vitro permeation studies show that there was a 4-fold increase of AST NSC/HSA-PEG liposomes@SA/CMCS in AST permeation across the intestinal epithelium. Subsequent in vivo experiments demonstrated that the composite carrier exhibited a remarkable mucoadhesive capacity, allowing for extended intestinal retention of up to 12 h, and it displayed deep penetration through the mucus layer, efficiently entering the intestinal villi epithelial cells, and enhancing the absorption of AST and its bioavailability in vivo. And oral administration of AST NSC/HSA-PEG liposomes@SA/CMCS could effectively prevent hypercholesterolemia caused by a high-fat, high-cholesterol diet (HFHCD). These advancements highlight the potential of NSC/HSA-PEG liposomes@SA/CMCS composite carriers for targeted and oral uptake of hydrophobic bioactives.


Assuntos
Quitosana , Hipercolesterolemia , Recém-Nascido , Humanos , Lipossomos/química , Microesferas , Xantofilas , Quitosana/química , Portadores de Fármacos/química , Administração Oral
6.
Nutr Rev ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412339

RESUMO

With the continuous advancements in detection methods and the exploration of unknown substances, an increasing number of bioactive compounds are being discovered. Fatty acid esters of hydroxyl fatty acids (FAHFAs), a class of endogenous lipids found in 2014, exhibit various physiological activities, such as improving glucose tolerance and insulin sensitivity, stimulating insulin secretion, and demonstrating broad anti-inflammatory effects. Moreover, some FAHFAs are closely linked to intestinal health and can serve as potential biomarkers for gut health. Various FAHFAs have been observed in food, including palmitic acid esters of hydroxy stearic acids (PAHSA), oleic acid esters of hydroxy stearic acids (OAHSA), linoleic acid esters of hydroxy linoleic acid (LAHLA). As a type of lipid regularly consumed in the daily diet, it is highly important to ascertain the types and quantities of FAHFAs present in the diet. This article, based on existing research, provides a review of the analysis methods for FAHFAs, particularly focusing on the separation of chiral isomers. It also summarizes the sources and contents of dietary FAHFAs, emphasizing their bioavailability and impact on the gut. Understanding the beneficial effects of these lipids in the diet can serve as a valuable reference for the development of specific functional foods.

7.
Mol Omics ; 20(3): 192-202, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38224158

RESUMO

Areca nut (Areca catechu L.) is commonly consumed as a chewing food in the Asian region. However, the investigations into the components of areca nut are limited. In this study, we have developed an approach that combines mass spectrometry with feature-based molecular network to explore the chemical characteristics of the areca nut. In comparison to the conventional method, this technique demonstrates a superior capability in annotating unknown compounds present in areca nut. We annotated a total of 52 compounds, including one potential previously unreported alkaloid, one carbohydrate, and one phenol and confirmed the presence of 7 of them by comparing with commercial standards. The validated method was used to evaluate chemical features of areca nut at different growth stages, annotating 25 compounds as potential biomarkers for distinguishing areca nut growth stages. Therefore, this approach offers a rapid and accurate method for the component analysis of areca nut.


Assuntos
Alcaloides , Areca , Areca/química , Nozes/química , Alcaloides/análise , Alcaloides/química , Espectrometria de Massas
8.
Carbohydr Polym ; 327: 121694, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171651

RESUMO

Salecan, a natural ß-glucan compromising nine residues connected by ß-(1 â†’ 3)/α-(1 â†’ 3) glycosidic bonds, is one of the newly approved food ingredients. Salecan has multiple health-improving effects, yet its mechanism against Type 2 diabetes mellitus (T2DM) remains poorly understood. In this study, the hypoglycemic effect and underlying mechanism of Salecan intervention on STZ-induced diabetic model mice were investigated. After 8 weeks of gavage, Salecan attenuated insulin resistance and repaired pancreatic ß cells in a dose-dependent manner. In addition, Salecan supplement remodel the structure of the gut microbiota and altered the level of intestinal metabolites. Serum metabolites, especially unsaturated fatty acids, were also affected significantly. In addition, tight junction proteins in the colon and autophagy-related proteins in the pancreas were upregulated. Multiomics analysis indicated that Lactobacillus johnsonii, Muribaculaceae, and Lachnoclostridium were highly associated with fatty acid esters of hydroxy fatty acids (FAHFA) levels in the colon, accordingly enhancing arachidonic acid and linoleic acid in serum, and promoting GLP-1 release in the intestine and insulin secretion in the pancreas, thus relieving insulin resistance and exhibiting hypoglycemic effects. These findings provide a novel understanding of the anti-diabetic effect of Salecan in mice from a molecular perspective, paving the way for the wide use of Salecan.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , beta-Glucanas , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Multiômica , beta-Glucanas/química
9.
Analyst ; 149(3): 751-760, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38194259

RESUMO

Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in the nutritional value of milk lipids. However, a comprehensive analysis of PUFAs and their esters in milk is still scarce. In this study, we developed a novel pseudotargeted lipidomics approach, named SpecLipIDA, for determining PUFA lipids in milk. Triglycerides (TGs) and phospholipids (PLs) were separated using NH2 cartridges, and mass spectrometry data in the information-dependent acquisition (IDA) mode were preprocessed by MS-DIAL, leading to improved identification in subsequent targeted analysis. The target matching algorithm, based on specific lipid cleavage patterns, demonstrated enhanced identification of PUFA lipids compared to the lipid annotations provided by MS-DIAL and GNPS. The approach was applied to identify PUFA lipids in various milk samples, resulting in the detection of a total of 115 PUFA lipids. The results revealed distinct differences in PUFA lipids among different samples, with 44 PUFA lipids significantly contributing to these differences. Our study indicated that SpecLipIDA is an efficient method for rapidly and specifically screening PUFA lipids.


Assuntos
Lipidômica , Leite , Animais , Ácidos Graxos Insaturados , Fosfolipídeos , Ácidos Docosa-Hexaenoicos , Ácidos Graxos
10.
Food Chem ; 438: 137400, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38039864

RESUMO

The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.


Assuntos
Ácidos Graxos não Esterificados , Óleo de Semente do Linho , Humanos , Idoso , Óleo de Girassol , Trato Gastrointestinal , Óleo de Amendoim , Digestão/fisiologia
11.
Anal Chem ; 95(51): 18793-18802, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095040

RESUMO

Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.


Assuntos
Multiômica , Proteômica , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos
12.
Food Res Int ; 173(Pt 1): 113301, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803609

RESUMO

Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.


Assuntos
Análise de Alimentos , Estado Nutricional , Análise de Alimentos/métodos , Tecnologia
13.
Life Sci ; 330: 121978, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516433

RESUMO

Brown adipose tissue (BAT) and beige fat have been documented to rapidly consume fatty acids (FAs) rather than deposit of lipid, and they have high capacity to dissipate energy via nonshivering thermogenesis, making BAT and beige fat potential organs to fight obesity and related chronic diseases. As the main substrate for thermogenesis and the basic constituent unit of triacylglycerol, FAs could modify BAT and remodel white adipose tissue (WAT) to beige fat. However, there are few comprehensive review covering the link between dietary FAs and thermogenic adipocyte..In this review, we described the metabolism of thermogenic adipose upon activation and comprehensively summarized publications on the dietary FAs that activate or deactivate BAT and beige fat. Specifically, eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA), α-linolenic acid (α-ALA), conjugated linoleic acid (CLA), oleic acid (OA), long-chain saturated fatty acid (LC-SFA) and medium-chain fatty acid (MCFA). in addition, the influences on BAT function, WAT remodeling, and lipid metabolism, as well as delineated the possible mechanisms are also reviewed. Characterizing thermogenic or obesogenic dietary FAs may offer novel insight into dietary oil and nutritional treatment.


Assuntos
Tecido Adiposo Bege , Obesidade , Humanos , Tecido Adiposo Bege/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Ácidos Graxos/metabolismo , Termogênese
14.
Food Funct ; 14(14): 6312-6319, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37378416

RESUMO

Background: branched-chain fatty acids (BCFAs) have recently emerged as a group of functional fatty acids that are widely distributed in various foodstuffs, including dairy products, ruminant meat products, and fermented foods. Several studies have investigated the differences in the levels of BCFAs among individuals with varying risks of metabolic syndrome (MetS). In this study, we conducted a meta-analysis to explore the relationship between BCFAs and MetS, and to assess the feasibility of BCFAs as potential biomarkers for diagnosing MetS. Methods: in accordance with the PRISMA guidelines, we conducted a systematic literature search on PubMed, Embase, and the Cochrane Library up to March 2023. Both longitudinal and cross-sectional studies were included. The quality of the longitudinal and cross-sectional studies was evaluated using the Newcastle-Ottawa Scale (NOS) and the Agency for Healthcare Research and Quality (AHRQ) criteria, respectively. Heterogeneity detection and sensitivity analysis of the included research literature were carried out using R 4.2.1 software with a random-effects model. Results: Our meta-analysis included 685 participants and revealed a significant negative correlation between the endogenous BCFAs (serum BCFAs and adipose tissue BCFAs) and the risk of developing MetS, with lower BCFA levels found in individuals at a high risk of MetS (WMD: -0.11%, 95% CI: [-0.12, -0.09] %, P < 0.0001). However, there was no difference in fecal BCFAs among different MetS risk groups (SMD: -0.36, 95% CI: [-1.32, 0.61], P = 0.4686). Conclusion: our study provides insights into the relationship between BCFAs and the risk of developing MetS, and lays the groundwork for the development of novel biomarkers for diagnosing MetS in the future.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/diagnóstico , Estudos Transversais , Ácidos Graxos/metabolismo , Fatores de Risco , Biomarcadores
15.
Int J Biol Macromol ; 244: 125311, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37302627

RESUMO

Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.


Assuntos
Antioxidantes , Lipossomos , Humanos , Lipossomos/química , Antioxidantes/farmacologia , Células CACO-2 , Polietilenoglicóis/química
16.
J Sci Food Agric ; 103(12): 5893-5903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144349

RESUMO

BACKGROUND: The digestion behavior of lipids plays a crucial role in their nutritional values. Currently, the complex dynamic variations of human gastrointestinal conditions are considered in simulated digestion models. The present study compared the digestion behavior of glycerol trilaurate (GTL), glycerol tripalmitate (GTP) and glycerol tristearate (GTS) in a static in vitro digestion model and a dynamic in vitro digestion model. In the dynamic digestion model, the parameters of gastric juice secretion, the rate of gastric emptying, the secretion of intestinal juice and the pH variations were estimated. RESULTS: The dynamic digestion model showed a certain extent of gastric lipase hydrolysis, while almost no lipolysis happened in the gastric phase of the static digestion model. A smoother digestive behavior was observed in the dynamic model than that in the static model. In the static model, the particle size distribution in gastric and intestinal phase changed rapidly in all triacylglycerol (TAG) groups. The change of particle size during the whole digestion period in GTL is more moderate than GTP and GTS. In addition, the final free fatty acids release degree was 58.558%, 54.36%, and 52.97% for GTL, GTP, and GTS, respectively. CONCLUSION: This study illustrated the different digestion profiles of TAGs in two digestion models and the results will contribute to a better understanding of different in vitro digestion models in lipid digestion. © 2023 Society of Chemical Industry.


Assuntos
Glicerol , Estômago , Humanos , Digestão , Guanosina Trifosfato , Lipólise , Modelos Biológicos
17.
Mol Omics ; 19(6): 464-472, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37139637

RESUMO

Food metabolomics is described as the implementation of metabolomics to food systems such as food materials, food processing, and food nutrition. These applications generally create large amounts of data, and although technologies exist to analyze these data and different tools exist for various ecosystems, downstream analysis is still a challenge and the tools are not integrated into a single method. In this article, we developed a data processing method for untargeted LC-MS data in metabolomics, derived from the integration of computational MS tools from OpenMS into the workflow system Konstanz Information Miner (KNIME). This method can analyze raw MS data and produce high-quality visualization. A MS1 spectra-based identification, two MS2 spectra-based identification workflows and a GNPSExport-GNPS workflow are included in this method. Compared with conventional approaches, the results of MS1&MS2 spectra-based identification workflows are combined in this approach via the tolerance of retention times and mass to charge ratios (m/z), which can greatly reduce the rate of false positives in metabolomics datasets. In our example, filtering with the tolerance removed more than 50% of the possible identifications while retaining 90% of the correct identification. The results demonstrated that the developed method is a rapid and reliable method for food metabolomics data processing.


Assuntos
Ecossistema , Software , Metabolômica/métodos , Espectrometria de Massas , Cromatografia Líquida/métodos
18.
Crit Rev Food Sci Nutr ; : 1-13, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140184

RESUMO

As an emerging group of bioactive fatty acids, monomethyl branched-chain fatty acids (mmBCFAs) have sparked the interest of many researchers both domestically and internationally. In addition to documenting the importance of mmBCFAs for growth and development, there is increasing evidence that mmBCFAs are highly correlated with obesity and insulin resistance. According to previous pharmacological investigations, mmBCFAs also exhibit anti-inflammatory effects and anticancer properties. This review summarized the distribution of mmBCFAs, which are widely found in dairy products, ruminants, fish, and fermented foods. Besides, we discuss the biosynthesis pathway in different species and detection methods of mmBCFAs. With the hope to unveil their mechanisms of action, we recapitulated detailed the nutrition and health benefits of mmBCFAs. Furthermore, this study provides a thorough, critical overview of the current state of the art, upcoming difficulties, and trends in mmBCFAs.

19.
Life Sci ; 325: 121774, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172817

RESUMO

AIMS: Lipid metabolism in macrophages plays a key role in atherosclerosis development. Excessive low-density lipoprotein taken by macrophages leads to foam cell formation. In this study, we aimed to investigate the effect of astaxanthin on foam cells, and using mass spectrometry-based proteomic approaches to identified the protein expression changes of foam cells. MAIN METHODS: The foam cell model was build, then treated with astaxanthin, and tested the content of TC and FC. And proteomics analysis was used in macrophage, macrophage-derived foam cells and macrophage-derived foam cells treated with AST. Then bioinformatic analyses were performed to annotate the functions and associated pathways of the differential proteins. Finally, western blot analysis further confirmed the differential expression of these proteins. KEY FINDINGS: Total cholesterol (TC) while free cholesterol (FC) increased in foam cells treated with astaxanthin. The proteomics data set presents a global view of the critical pathways involved in lipid metabolism included PI3K/CDC42 and PI3K/RAC1/TGF-ß1 pathways. These pathways significantly increased cholesterol efflux from foam cells and further improved foam cell-induced inflammation. SIGNIFICANCE: The present finding provide new insights into the mechanism of astaxanthin regulate lipid metabolism in macrophage foam cells.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Células Espumosas/metabolismo , Proteômica , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Proteínas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-37098174

RESUMO

Introduction: Cannabidiol (CBD) has important pharmacological activity, which includes antispasmodic, antioxidant, antithrombotic, and antianxiety properties. CBD has been applied as a health supplement to atherosclerosis. However, CBDs effect on gut microbiota and metabolic phenotype is unclear. Materials and Methods: We constructed a high production of cardiovascular risk factors, such as trimethylamine-N-oxide (TMAO) and phenylacetylglutamine (PAGln), in a mouse model using Clostridium sporogenes colonization. We used 16S ribosomal RNA (rRNA) gene sequencing and ultra-high performance liquid chromatography-quadrupole time-of flight mass spectrometry-based metabolomics to evaluate the effect of CBD on gut microbiota and plasma metabolites. Results: CBD decreased the levels of creatine kinase (CK), alanine transaminase (ALT), and low-density lipoprotein cholesterol and markedly increased high-density lipoprotein cholesterol. Furthermore, CBD treatment increased the abundance of beneficial bacteria, which include Lachnospiraceae_NK4A136 and Blautia in the gut, but it decreased the levels of TMAO and PAGln in the plasma. Conclusion: CBD might have beneficial effects for cardiovascular protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...